Nuclear fusion is a nuclear reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons by-products. The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises as a result of the difference in nuclear binding energy between the atomic nuclei before and after the fusion reaction. Nuclear fusion is the process that powers all active stars, via many reaction pathways.
Fusion processes require an extremely large Lawson criterion of temperature, density, and confinement time. These conditions occur only in Stellar core, advanced nuclear weapons, and are approached in fusion power experiments.
A nuclear fusion process that produces atomic nuclei lighter than nickel-62 is generally exothermic, due to the positive gradient of the nuclear binding energy curve. The most fusible nuclei are among the lightest, especially deuterium, tritium, and helium-3. The opposite process, nuclear fission, is most energetic for very heavy nuclei, especially the actinides.
Applications of fusion include fusion power, thermonuclear weapons, boosted fission weapons, Neutron source, and superheavy element production.
Quantum tunneling was discovered by Friedrich Hund in 1927, with relation to electron levels.Tunnelling was independently observed by Soviet scientists Grigory Samuilovich Landsberg and Leonid Isaakovich Mandelstam. See:
In 1928, George Gamow was the first to apply tunneling to the nucleus, first to alpha decay, then to fusion as an inverse process. From this, in 1929, Robert Atkinson and Fritz Houtermans made the first estimates for stellar fusion rates.
In 1938, Hans Bethe worked with Charles Critchfield to enumerate the proton–proton chain that dominates Sun-type stars. In 1939, Bethe published the discovery of the CNO cycle common to higher-mass stars.
In papers from July and November 1933, Ernest Lawrence et. al. at the UCRL, in some of the earliest cyclotron experiments, accidentally produced the first Fusion power reactions:
The Radiation Lab, only detecting the resulting energized protons and neutrons, misinterpreted the source as an exothermic disintegration of the deuterons, now known to be impossible. In May 1934, Mark Oliphant, Paul Harteck, and Ernest Rutherford at the Cavendish Laboratory, published an intentional deuterium fusion experiment, and made the discovery of both tritium and helium-3. This is widely considered the first experimental demonstration of fusion.
In 1938, Arthur Ruhlig at the University of Michigan made the first observation of deuterium–tritium (DT) fusion and its characteristic 14 MeV neutrons, now known as the most favourable reaction:
From 1945, John von Neumann, Teller, and other Los Alamos scientists used ENIAC, one of the first electronic computers, to simulate thermonuclear weapon detonations.
The first artificial thermonuclear fusion reaction occurred during the 1951 US Greenhouse Item nuclear test, using a small amount of deuterium–tritium gas. This produced the largest yield to date, at 225 kt, 15 times that of Little Boy. The first "true" thermonuclear weapon detonation i.e. a two-stage device, was the 1952 Ivy Mike test of a Liquid hydrogen Deuterium fusion device, yielding over 10 Mt. The key to this jump was the full utilization of the fission blast by the Teller–Ulam design.
The Soviet Union had begun their focus on a hydrogen bomb program earlier, and in 1953 carried out the RDS-6s test. This had international impacts as the first air-deliverable bomb using fusion, but yielded 400 kt and was limited by its single-stage design. The first Soviet two-stage test was RDS-37 in 1955 yielding 1.5 Mt, using an independently reached version of the Teller–Ulam design.
Modern devices benefit from the usage of solid lithium deuteride with an enrichment of lithium-6. This is due to the Jetter cycle involving the exothermic reaction:
The first experiments producing large amounts of controlled fusion power were the experiments with mixes of deuterium and tritium in Tokamaks. Experiments in the TFTR at the PPPL in Princeton University Princeton NJ, USA during 1993–1996 produced created 1.6 GJ fusion energy. The peak fusion power was 10.3 MW from reactions per second, and peak fusion energy created in one discharge was 7.6 MJ. Subsequent experiments in the JET in 1997 achieved a peak fusion power of 16 MW (). The central Q, defined as the local fusion power produced to the local applied heating power, is computed to be 1.3."Core fusion power gain and alpha heating in JET, TFTR, and ITER", R.V. Budny, J.G. Cordey and TFTR Team and JET Contributors, Nuclear Fus. (2016) <56> 056002 #5 (May) https://iopscience.iop.org/article/10.1088/0029-5515/56/5/056002 //home/budny/papers/NF/core_q_dt/nf_56_5_056002.pdf A JET experiment in 2024 produced 69 MJ of fusion power, consuming 0.2 mgm of D and T.
The US National Ignition Facility, which uses laser-driven inertial confinement fusion, was designed with a goal of achieving a fusion energy gain factor (Q) of larger than one; the first large-scale laser target experiments were performed in June 2009 and ignition experiments began in early 2011. On 13 December 2022, the United States Department of Energy announced that on 5 December 2022, they had successfully accomplished break-even fusion, "delivering 2.05 megajoules (MJ) of energy to the target, resulting in 3.15 MJ of fusion energy output." The rate of supplying power to the experimental test cell is hundreds of times larger than the power delivered to the target.
Prior to this breakthrough, controlled fusion reactions had been unable to produce break-even (self-sustaining) controlled fusion. The two most advanced approaches for it are magnetic confinement (toroid designs) and inertial confinement (laser designs). Workable designs for a toroidal reactor that theoretically will deliver ten times more fusion energy than the amount needed to heat plasma to the required temperatures are in development (see ITER). The ITER facility is expected to finish its construction phase in 2025. It will start commissioning the reactor that same year and initiate plasma experiments in 2025, but is not expected to begin full deuterium–tritium fusion until 2035.
Private companies pursuing the commercialization of nuclear fusion received $2.6 billion in private funding in 2021 alone, going to many notable startups including but not limited to Commonwealth Fusion Systems, Helion Energy., General Fusion, TAE Technologies Inc. and Zap Energy Inc.
One of the most recent breakthroughs to date in maintaining a sustained fusion reaction occurred in France's WEST fusion reactor. It maintained a 90 million degree plasma for a record time of six minutes. This is a tokamak style reactor which is the same style as the upcoming ITER reactor.
Fusion powers and produces most elements lighter than cobalt in a process called nucleosynthesis. The Sun is a main-sequence star, and, as such, generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen and makes 616 million metric tons of helium each second. The fusion of lighter elements in stars releases energy and the mass that always accompanies it. For example, in the fusion of two hydrogen nuclei to form helium, 0.645% of the mass is carried away in the form of kinetic energy of an alpha particle or other forms of energy, such as electromagnetic radiation.
It takes considerable energy to force nuclei to fuse, even those of the lightest element, hydrogen. When accelerated to high enough speeds, nuclei can overcome this electrostatic repulsion and be brought close enough such that the attractive nuclear force is greater than the repulsive Coulomb force. The strong force grows rapidly once the nuclei are close enough, and the fusing nucleons can essentially "fall" into each other and the result is fusion; this is an exothermic process.
Energy released in most is much larger than in chemical reactions, because the binding energy that holds a nucleus together is greater than the energy that holds to a nucleus. For example, the ionization energy gained by adding an electron to a hydrogen nucleus is —less than one-millionth of the released in the deuterium–tritium (D–T) reaction shown in the adjacent diagram. Fusion reactions have an energy density many times greater than nuclear fission; the reactions produce far greater energy per unit of mass even though individual fission reactions are generally much more energetic than individual fusion ones, which are themselves millions of times more energetic than chemical reactions. Via the mass–energy equivalence, fusion yields a 0.7% efficiency of reactant mass into energy. This can be only be exceeded by the extreme cases of the Accretion disk process involving neutron stars or black holes, approaching 40% efficiency, and antimatter annihilation at 100% efficiency. (The complete conversion of one gram of matter would expel of energy.)
Around 1920, Arthur Eddington anticipated the discovery and mechanism of nuclear fusion processes in stars, in his paper The Internal Constitution of the Stars. At that time, the source of stellar energy was unknown; Eddington correctly speculated that the source was fusion of hydrogen into helium, liberating enormous energy according to Einstein's equation . This was a particularly remarkable development since at that time fusion and thermonuclear energy had not yet been discovered, nor even that stars are largely composed of hydrogen (see metallicity). Eddington's paper reasoned that:
All of these speculations were proven correct in the following decades.
The primary source of solar energy, and that of similar size stars, is the fusion of hydrogen to form helium (the proton–proton chain reaction), which occurs at a solar-core temperature of 14 million kelvin. The net result is the fusion of four Proton into one alpha particle, with the release of two Positron and two Neutrino (which changes two of the protons into neutrons), and energy. In heavier stars, the CNO cycle and other processes are more important. As a star uses up a substantial fraction of its hydrogen, it begins to fuse heavier elements. In massive cores, silicon-burning is the final fusion cycle, leading to a build-up of iron and nickel nuclei.
Nuclear binding energy makes the production of elements heavier than nickel via fusion energetically unfavorable. These elements are produced in non-fusion processes: the s-process, r-process, and the variety of processes that can produce p-nuclei. Such processes occur in giant star shells, or supernovae, or neutron star mergers.
Much more rarely, helium white dwarfs may merge, which does not cause an explosion but begins helium burning in an extreme type of helium star.
When a nucleon such as a proton or neutron is added to a nucleus, the nuclear force attracts it to all the other nucleons of the nucleus (if the atom is small enough), but primarily to its immediate neighbors due to the short range of the force. The nucleons in the interior of a nucleus have more neighboring nucleons than those on the surface. Since smaller nuclei have a larger surface-area-to-volume ratio, the binding energy per nucleon due to the nuclear force generally increases with the size of the nucleus but approaches a limiting value corresponding to that of a nucleus with a diameter of about four nucleons. It is important to keep in mind that nucleons are Quantum physics. So, for example, since two neutrons in a nucleus are identical to each other, the goal of distinguishing one from the other, such as which one is in the interior and which is on the surface, is in fact meaningless, and the inclusion of quantum mechanics is therefore necessary for proper calculations.
The electrostatic force, on the other hand, is an inverse-square force, so a proton added to a nucleus will feel an electrostatic repulsion from all the other protons in the nucleus. The electrostatic energy per nucleon due to the electrostatic force thus increases without limit as nuclei atomic number grows.
The net result of the opposing electrostatic and strong nuclear forces is that the binding energy per nucleon generally increases with increasing size, up to the elements iron and nickel, and then decreases for heavier nuclei. Eventually, the binding energy becomes negative and very heavy nuclei (all with more than 208 nucleons, corresponding to a diameter of about 6 nucleons) are not stable. The four most tightly bound nuclei, in decreasing order of binding energy per nucleon, are , , , and . The Most Tightly Bound Nuclei . Hyperphysics.phy-astr.gsu.edu. Retrieved 17 August 2011. Even though the nickel isotope, , is more stable, the iron isotope is an order of magnitude more common. This is due to the fact that there is no easy way for stars to create through the alpha process.
An exception to this general trend is the helium-4 nucleus, whose binding energy is higher than that of lithium, the next heavier element. This is because protons and neutrons are , which according to the Pauli exclusion principle cannot exist in the same nucleus in exactly the same state. Each proton or neutron's energy state in a nucleus can accommodate both a spin up particle and a spin down particle. Helium-4 has an anomalously large binding energy because its nucleus consists of two protons and two neutrons (it is a doubly magic nucleus), so all four of its nucleons can be in the ground state. Any additional nucleons would have to go into higher energy states. Indeed, the helium-4 nucleus is so tightly bound that it is commonly treated as a single quantum mechanical particle in nuclear physics, namely, the alpha particle.
The situation is similar if two nuclei are brought together. As they approach each other, all the protons in one nucleus repel all the protons in the other. Not until the two nuclei actually come close enough for long enough so the strong attractive nuclear force can take over and overcome the repulsive electrostatic force. This can also be described as the nuclei overcoming the so-called Coulomb barrier. The kinetic energy to achieve this can be lower than the barrier itself because of quantum tunneling.
The Coulomb barrier is smallest for isotopes of hydrogen, as their nuclei contain only a single positive charge. A diproton is not stable, so neutrons must also be involved, ideally in such a way that a helium nucleus, with its extremely tight binding, is one of the products.
Using deuterium–tritium fuel, the resulting energy barrier is about 0.1 MeV. In comparison, the energy needed to remove an electron from hydrogen is 13.6 eV. The (intermediate) result of the fusion is an unstable 5He nucleus, which immediately ejects a neutron with 14.1 MeV. The recoil energy of the remaining 4He nucleus is 3.5 MeV, so the total energy liberated is 17.6 MeV. This is many times more than what was needed to overcome the energy barrier.
The reaction cross section (σ) is a measure of the probability of a fusion reaction as a function of the relative velocity of the two reactant nuclei. If the reactants have a distribution of velocities, e.g. a thermal distribution, then it is useful to perform an average over the distributions of the product of cross-section and velocity. This average is called the 'reactivity', denoted . The reaction rate (fusions per volume per time) is times the product of the reactant number densities:
If a species of nuclei is reacting with a nucleus like itself, such as the DD reaction, then the product must be replaced by .
increases from virtually zero at room temperatures up to meaningful magnitudes at temperatures of . At these temperatures, well above typical energies (13.6 eV in the hydrogen case), the fusion reactants exist in a Plasma physics state.
The significance of as a function of temperature in a device with a particular energy confinement time is found by considering the Lawson criterion. This is an extremely challenging barrier to overcome on Earth, which explains why fusion research has taken many years to reach the current advanced technical state.
Temperature is a measure of the average kinetic energy of particles, so by heating the material it will gain energy. After reaching sufficient temperature, given by the Lawson criterion, the energy of accidental collisions within the plasma is high enough to overcome the Coulomb barrier and the particles may fuse together.
In a deuterium–tritium fusion reaction, for example, the energy necessary to overcome the Coulomb barrier is 0.1 Electronvolt. Converting between energy and temperature shows that the 0.1 MeV barrier would be overcome at a temperature in excess of 1.2 billion kelvin.
There are two effects that are needed to lower the actual temperature. One is the fact that temperature is the average kinetic energy, implying that some nuclei at this temperature would actually have much higher energy than 0.1 MeV, while others would be much lower. It is the nuclei in the high-energy tail of the velocity distribution that account for most of the fusion reactions. The other effect is quantum tunnelling. The nuclei do not actually have to have enough energy to overcome the Coulomb barrier completely. If they have nearly enough energy, they can tunnel through the remaining barrier. For these reasons fuel at lower temperatures will still undergo fusion events, at a lower rate.
Thermonuclear fusion is one of the methods being researched in the attempts to produce fusion power. If thermonuclear fusion becomes favorable to use, it would significantly reduce the world's carbon footprint.
Accelerating light ions is relatively easy, and can be done in an efficient manner—requiring only a vacuum tube, a pair of electrodes, and a high-voltage transformer; fusion can be observed with as little as 10 kV between the electrodes. The system can be arranged to accelerate ions into a static fuel-infused target, known as beam–target fusion, or by accelerating two streams of ions towards each other, beam–beam fusion. The key problem with accelerator-based fusion (and with cold targets in general) is that fusion cross sections are many orders of magnitude lower than Coulomb interaction cross-sections. Therefore, the vast majority of ions expend their energy emitting bremsstrahlung radiation and the ionization of atoms of the target. Devices referred to as sealed-tube neutron generators are particularly relevant to this discussion. These small devices are miniature particle accelerators filled with deuterium and tritium gas in an arrangement that allows ions of those nuclei to be accelerated against hydride targets, also containing deuterium and tritium, where fusion takes place, releasing a flux of neutrons. Hundreds of neutron generators are produced annually for use in the petroleum industry where they are used in measurement equipment for locating and mapping oil reserves.
A number of attempts to recirculate the ions that "miss" collisions have been made over the years. One of the better-known attempts in the 1970s was Migma, which used a unique particle storage ring to capture ions into circular orbits and return them to the reaction area. Theoretical calculations made during funding reviews pointed out that the system would have significant difficulty scaling up to contain enough fusion fuel to be relevant as a power source. In the 1990s, a new arrangement using a field-reversed configuration (FRC) as the storage system was proposed by Norman Rostoker and continues to be studied by TAE Technologies . A closely related approach is to merge two FRC's rotating in opposite directions,J. Slough, G. Votroubek, and C. Pihl, "Creation of a high-temperature plasma through merging and compression of supersonic field reversed configuration plasmoids" Nucl. Fusion 51,053008 (2011). which is being actively studied by Helion Energy. Because these approaches all have ion energies well beyond the Coulomb barrier, they often suggest the use of alternative fuel cycles like p-11B that are too difficult to attempt using conventional approaches.A. Asle Zaeem et al "Aneutronic Fusion in Collision of Oppositely Directed Plasmoids" Plasma Physics Reports, Vol. 44, No. 3, pp. 378–386 (2018).
Fusion of very heavy target nuclei with heavy ion beams has been used to discover superheavy elements:
All of the elements heavier than iron have some potential energy to release, in theory. At the extremely heavy end of element production, these heavier elements can exothermic in the process of being split again back toward the size of iron, in the process of nuclear fission. Nuclear fission thus releases energy that has been stored, sometimes billions of years before, during stellar nucleosynthesis.
The most well known Inertial electrostatic confinement approach is the fusor. Starting in 1999, a number of amateurs have been able to do amateur fusion using these homemade devices. Other IEC devices include: the Polywell, MIX POPS and Marble concepts."The Multiple Ambipolar Recirculating Beam Line Experiment" Poster presentation, 2011 US–Japan IEC conference, Dr. Alex Klein
To be a useful energy source, a fusion reaction must satisfy several criteria. It must:
Few reactions meet these criteria. The following are those with the largest cross sections:
) |
50% |
50% |
) |
57% |
43% |
) |
For reactions with two products, the energy is divided between them in inverse proportion to their masses, as shown. In most reactions with three products, the distribution of energy varies. For reactions that can result in more than one set of products, the branching ratios are given.
Some reaction candidates can be eliminated at once. The D–6Li reaction has no advantage compared to Proton– because it is roughly as difficult to burn but produces substantially more neutrons through – side reactions. There is also a Proton– reaction, but the cross section is far too low, except possibly when T i > 1 MeV, but at such high temperatures an endothermic, direct neutron-producing reaction also becomes very significant. Finally there is also a Proton– reaction, which is not only difficult to burn, but can be easily induced to split into two alpha particles and a neutron.
In addition to the fusion reactions, the following reactions with neutrons are important in order to "breed" tritium in "dry" fusion bombs and some proposed fusion reactors:
+ 4.784 MeV |
+ Neutron − 2.467 MeV |
The latter of the two equations was unknown when the U.S. conducted the Castle Bravo fusion bomb test in 1954. Being just the second fusion bomb ever tested (and the first to use lithium), the designers of the Castle Bravo "Shrimp" had understood the usefulness of 6Li in tritium production, but had failed to recognize that 7Li fission would greatly increase the yield of the bomb. While 7Li has a small neutron cross-section for low neutron energies, it has a higher cross section above 5 MeV. Subsection 4.7.4c . Kayelaby.npl.co.uk. Retrieved 19 December 2012. The 15 Mt yield was 150% greater than the predicted 6 Mt and caused unexpected exposure to fallout.
To evaluate the usefulness of these reactions, in addition to the reactants, the products, and the energy released, one needs to know something about the nuclear cross section. Any given fusion device has a maximum plasma pressure it can sustain, and an economical device would always operate near this maximum. Given this pressure, the largest fusion output is obtained when the temperature is chosen so that is a maximum. This is also the temperature at which the value of the triple product required for ignition is a minimum, since that required value is inversely proportional to (see Lawson criterion). (A plasma is "ignited" if the fusion reactions produce enough power to maintain the temperature without external heating.) This optimum temperature and the value of at that temperature is given for a few of these reactions in the following table.
Note that many of the reactions form chains. For instance, a reactor fueled with and creates some , which is then possible to use in the – reaction if the energies are "right". An elegant idea is to combine the reactions (8) and (9). The from reaction (8) can react with in reaction (9) before completely thermalizing. This produces an energetic proton, which in turn undergoes reaction (8) before thermalizing. Detailed analysis shows that this idea would not work well, but it is a good example of a case where the usual assumption of a Maxwellian plasma is not appropriate.
+ !Nuclear Fusion Fuel Isotope !Half-Life !Abundance | ||
CNO cycle#CNO cycle#CNO-ICNO cycle#CNO-IICNO cycle#CNO-IIICNO cycle#CNO-IVCNO cycle#HCNO-ICNO cycle#HCNO-IICNO cycle#HCNO-III | Stable | 99.98% |
Nuclear fusion#Criteria and candidates for terrestrial reactionsAneutronic fusion#Coulomb barrierAneutronic fusion#Candidate reactionsCold fusion#Lack of expected reaction products | Stable | 0.02% |
12.32(2) y | trace | |
stable | 0.0002% | |
stable | 99.9998% | |
stable | 7.59% | |
stable | 92.41% | |
Aneutronic fusion#Residual radiation | stable | 80% |
stable | 98.9% | |
stable | 1.1% | |
9.965(4) min | syn | |
stable | 99.6% | |
stable | 0.4% | |
70.621(11) s | syn | |
122.266(43) s | syn | |
stable | 99.76% | |
stable | 0.04% | |
stable | 0.20% | |
64.370(27) s | syn | |
109.734(8) min | trace | |
stable | 100% | |
1664.20(47) ms | trace | |
17.2569(19) s | trace |
Specification of the – reaction entails some difficulties, though. To begin with, one must average over the two branches (2i) and (2ii). More difficult is to decide how to treat the and products. burns so well in a deuterium plasma that it is almost impossible to extract from the plasma. The – reaction is optimized at a much higher temperature, so the burnup at the optimum – temperature may be low. Therefore, it seems reasonable to assume the but not the gets burned up and adds its energy to the net reaction, which means the total reaction would be the sum of (2i), (2ii), and (1):
For calculating the power of a reactor (in which the reaction rate is determined by the D–D step), we count the – fusion energy per D–D reaction as Efus = (4.03 MeV + 17.6 MeV) × 50% + (3.27 MeV) × 50% = 12.5 MeV and the energy in charged particles as Ech = (4.03 MeV + 3.5 MeV) × 50% + (0.82 MeV) × 50% = 4.2 MeV. (Note: if the tritium ion reacts with a deuteron while it still has a large kinetic energy, then the kinetic energy of the helium-4 produced may be quite different from 3.5 MeV,A momentum and energy balance shows that if the tritium has an energy of ET (and using relative masses of 1, 3, and 4 for the neutron, tritium, and helium) then the energy of the helium can be anything from (12ET)1/2−(5×17.6MeV+2×ET)1/22/25 to (12ET)1/2+(5×17.6MeV+2×ET)1/22/25. For ET=1.01 MeV this gives a range from 1.44 MeV to 6.73 MeV. so this calculation of energy in charged particles is only an approximation of the average.) The amount of energy per deuteron consumed is 2/5 of this, or 5.0 MeV (a specific energy of about 225 million Megajoule per kilogram of deuterium).
Another unique aspect of the – reaction is that there is only one reactant, which must be taken into account when calculating the reaction rate.
With this choice, we tabulate parameters for four of the most important reactions
0.80 |
0.66 |
≈0.05 |
≈0.001 |
The last column is the neutronicity of the reaction, the fraction of the fusion energy released as neutrons. This is an important indicator of the magnitude of the problems associated with neutrons like radiation damage, biological shielding, remote handling, and safety. For the first two reactions it is calculated as . For the last two reactions, where this calculation would give zero, the values quoted are rough estimates based on side reactions that produce neutrons in a plasma in thermal equilibrium.
Of course, the reactants should also be mixed in the optimal proportions. This is the case when each reactant ion plus its associated electrons accounts for half the pressure. Assuming that the total pressure is fixed, this means that particle density of the non-hydrogenic ion is smaller than that of the hydrogenic ion by a factor . Therefore, the rate for these reactions is reduced by the same factor, on top of any differences in the values of . On the other hand, because the – reaction has only one reactant, its rate is twice as high as when the fuel is divided between two different hydrogenic species, thus creating a more efficient reaction.
Thus there is a "penalty" of for non-hydrogenic fuels arising from the fact that they require more electrons, which take up pressure without participating in the fusion reaction. (It is usually a good assumption that the electron temperature will be nearly equal to the ion temperature. Some authors, however, discuss the possibility that the electrons could be maintained substantially colder than the ions. In such a case, known as a "hot ion mode", the "penalty" would not apply.) There is at the same time a "bonus" of a factor 2 for – because each ion can react with any of the other ions, not just a fraction of them.
We can now compare these reactions in the following table.
1 |
68 |
80 |
6800 |
2500 |
The maximum value of is taken from a previous table. The "penalty/bonus" factor is that related to a non-hydrogenic reactant or a single-species reaction. The values in the column "inverse reactivity" are found by dividing by the product of the second and third columns. It indicates the factor by which the other reactions occur more slowly than the – reaction under comparable conditions. The column "Lawson criterion" weights these results with Ech and gives an indication of how much more difficult it is to achieve ignition with these reactions, relative to the difficulty for the – reaction. The next-to-last column is labeled "power density" and weights the practical reactivity by Efus. The final column indicates how much lower the fusion power density of the other reactions is compared to the – reaction and can be considered a measure of the economic potential.
The huge size of the Sun and stars means that the x-rays produced in this process will not escape and will deposit their energy back into the plasma. They are said to be opaque to x-rays. But any terrestrial fusion reactor will be Optical depth for x-rays of this energy range. X-rays are difficult to reflect but they are effectively absorbed (and converted into heat) in less than mm thickness of stainless steel (which is part of a reactor's shield). This means the bremsstrahlung process is carrying energy out of the plasma, cooling it.
The ratio of fusion power produced to x-ray radiation lost to walls is an important figure of merit. This ratio is generally maximized at a much higher temperature than that which maximizes the power density (see the previous subsection). The following table shows estimates of the optimum temperature and the power ratio at that temperature for several reactions:
140 |
2.9 |
5.3 |
0.72 |
0.21 |
0.57 |
The actual ratios of fusion to Bremsstrahlung power will likely be significantly lower for several reasons. For one, the calculation assumes that the energy of the fusion products is transmitted completely to the fuel ions, which then lose energy to the electrons by collisions, which in turn lose energy by Bremsstrahlung. However, because the fusion products move much faster than the fuel ions, they will give up a significant fraction of their energy directly to the electrons. Secondly, the ions in the plasma are assumed to be purely fuel ions. In practice, there will be a significant proportion of impurity ions, which will then lower the ratio. In particular, the fusion products themselves must remain in the plasma until they have given up their energy, and will remain for some time after that in any proposed confinement scheme. Finally, all channels of energy loss other than Bremsstrahlung have been neglected. The last two factors are related. On theoretical and experimental grounds, particle and energy confinement seem to be closely related. In a confinement scheme that does a good job of retaining energy, fusion products will build up. If the fusion products are efficiently ejected, then energy confinement will be poor, too.
The temperatures maximizing the fusion power compared to the Bremsstrahlung are in every case higher than the temperature that maximizes the power density and minimizes the required value of the Lawson criterion. This will not change the optimum operating point for – very much because the Bremsstrahlung fraction is low, but it will push the other fuels into regimes where the power density relative to – is even lower and the required confinement even more difficult to achieve. For – and –, Bremsstrahlung losses will be a serious, possibly prohibitive problem. For –, Proton– and Proton– the Bremsstrahlung losses appear to make a fusion reactor using these fuels with a quasineutral, isotropic plasma impossible. Some ways out of this dilemma have been considered but rejected.Rostoker, Norman; Binderbauer, Michl and Qerushi, Artan. Fundamental limitations on plasma fusion systems not in thermodynamic equilibrium. fusion.ps.uci.edu This limitation does not apply to non-neutral and anisotropic plasmas; however, these have their own challenges to contend with.
This would imply that for the core of the sun, which has a Boltzmann distribution with a temperature of around 1.4 keV, the probability hydrogen would reach the threshold is , that is, fusion would never occur. However, fusion in the sun does occur due to quantum mechanics.
is of the order of the square of the de Broglie wavelength where is the reduced mass of the system and is the center of mass energy of the system.
can be approximated by the Gamow transparency, which has the form: where is the [[Gamow factor]] and comes from estimating the quantum tunneling probability through the potential barrier.
contains all the nuclear physics of the specific reaction and takes very different values depending on the nature of the interaction. However, for most reactions, the variation of is small compared to the variation from the Gamow factor and so is approximated by a function called the astrophysical [[S-factor]], , which is weakly varying in energy. Putting these dependencies together, one approximation for the fusion cross section as a function of energy takes the form:
More detailed forms of the cross-section can be derived through nuclear physics-based models and R-matrix theory.
+NRL Formulary Cross Section Coefficients ! !DT(1) !DD(2i) !DD(2ii) !DHe3(3) !TT(4) !The3(6) | ||||||
A1 | 45.95 | 46.097 | 47.88 | 89.27 | 38.39 | 123.1 |
A2 | 50200 | 372 | 482 | 25900 | 448 | 11250 |
A3 | 0 | |||||
A4 | 1.076 | 1.22 | 1.177 | 1.297 | 2.09 | 0 |
A5 | 409 | 0 | 0 | 647 | 0 | 0 |
+Bosch-Hale coefficients for the fusion cross section ! !DT(1) !DD(2ii) !DHe3(3) !The4 | ||||
31.3970 | 68.7508 | 31.3970 | 34.3827 | |
A1 | ||||
A2 | ||||
A3 | ||||
A4 | 0 | |||
A5 | 0 | 0 | ||
B1 | 0 | 0 | ||
B2 | 0 | 0 | ||
B3 | 0 | 0 | ||
B4 | 0 | 0 | 0 | |
Applicable Energy Range keV | 0.5–5000 | 0.3–900 | 0.5–4900 | 0.5–550 |
2.0 | 2.2 | 2.5 | 1.9 |
+NRL Formulary fusion reaction rates averaged over Maxwellian distributions !Temperature keV !DT(1) !DD(2ii) !DHe3(3) !TT(4) !The3(6) | |||||
1 | |||||
2 | |||||
5 | |||||
10 | |||||
20 | |||||
50 | |||||
100 | |||||
200 | |||||
500 | |||||
1000 |
|
|